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Oscillatory convection in vertical slots 

By J. N. KOSTER AND U. MULLER 
Kernforschungszentrum Karlsruhe, Institut fur Reaktorbauelemente, 

Postfach 3640, 7500 Karlsruhe 1 ,  Federal Republic of Germany 

(Received 17 February 1983 and in revised form 10 October 1983) 

Convective flow phenomena in slender vertical slots with larger vertical than 
horizontal dimension, i.e. Hele Shaw slots, heated from below and subject to  specified 
lateral boundary conditions, are investigated experimentally. Temperature fields in 
the liquid were visualized by holographic interferometry. Power-density spectra of 
local time-dependent thermocouple signals are calculated. 

I n  these slender slots different steady and time-dependent convection patterns 
develop with increasing Rayleigh number. The range of oscillatory convective flow 
exhibits periodic, quasiperiodic or non-periodic structures including possible fre- 
quency locking, subharmonics and intermittency. Quasiperiodic and periodic oscil- 
lations reappear a t  higher Rayleigh numbers, with non-periodic flows occurring 
in-between. These time-dependent flows appear to be caused by an instability of 
thermal boundary layers a t  the horizontal walls. Finally, at still higher Rayleigh 
numbers a reverse transition to a steady-state flow pattern is observed. The 
transitions between steady and non-steady flows are characterized by hysteresis. 

1. Introduction 
If a fluid, contained in a rectangular box with two horizontal walls, is heated from 

below and cooled from above, a free convective flow develops beyond a certain 
threshold of the temperature difference between lower and upper sides. At the onset 
of convection the flow is well organized as a set of stationary roll cells aligned parallel 
to the shorter horizontal side (Davis 1967; Stork & Muller 1972). At higher 
temperature differences the stationary roll pattern becomes unstable and a time- 
dependent flow develops. 

I n  fluid layers of large horizontal extent the transition to time-dependent convection 
has been investigated for some time. An evaluation of this work has been given by 
Busse (1981) and Koschmieder (1981). Investigations of time-dependent convection 
in boxes are more recent. 

Ahlers & Behringer (1978a, b )  as well as Libchaber & Maurer (1978) found out that 
the character of the oscillatory flow depends on the aspect ratio of the box. Gollub 
& Benson (1980) and Dubois (1981) have indicated that oscillations may die off. They 
discussed a transition from non-periodic to periodic flow. A re-emergence of periodic 
structures from a non-periodic flow has been found theoretically by Rabinovitch 
(1980) and Hirsch, Huberman & Scalapino (1982). Subharmonic routes to non-periodic 
flow have been reported by Libchaber & Maurer (1980) and Gollub, Benson & 
Steinman (1980). Intermittency was reported by Libchaber & Maurer (1980), Gollub 
& Benson (1980) and Berg6 et al. (1980). 

The main result of all these studies is that  in the range of time-dependent 
convective flow some distinct but characteristic phenomena are detected from the 
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time signals of local probes, i.e. periodicity, quasiperiodicity, frequency locking, 
period doubling, intermittency and non-periodicity. Usually no relation of these 
characteristics to the flow pattern is established. 

Some observations of a distinct relation between flow patterns and statistical 
characteristics of the oscillations have been reported by Berg6 (1979), Dubois (1981) 
and Dubois & Berg6 (1981). They find that the oscillation spectra depend on the roll 
size, i.e. on the wavenumbers realized in a cavity. At a particular Rayleigh number 
Gollub 8: Benson (1980) observed three frequencies in a three-roll convection pattern, 
indicating a possible influence of the number of rolls on the number of frequencies. 
In  a previous article (Koster & Muller 1980) we reported that in narrow vertical gaps, 
i.e. Hele Shaw cells, the threshold of the onset of oscillations depends primarily on 
the aspect ratio of height to width ( h / b ,  see $ 2 ) ,  if this ratio was of order unity, and 
secondly on the development of higher-mode convection. And, for the case of very 
long Hele Shaw cells where the width is much larger than the height, our results 
(Koster & Muller 1982) show that the onset of oscillation is strongly dependent on 
the wavenumber of the convection pattern. 

Experimental investigations in Hele Shaw cells with small aspect ratio (henceforth 
called Hele Shaw slots as defined in $ 2 )  have been performed also by Lyubimov, Putin 
& Chernatynskii (1977) and Putin & Tkacheva (1979). They found also that flow 
patterns and time-dependent behaviour are related. 

Numerical work related directly to the experiments in Hele Shaw slots presented 
in this article has been done by Frick & Muller (1983) and Gunther (1981,1982). Frick 
& Miiller used a Galerkin procedure to  calculate time-dependent high-wavenumber 
convection in a Hele Shaw cell. Gunther used a finite-difference scheme to calculate 
the flow in a Hele Shaw slot. These authors have reproduced essential phenomena 
observed in our experiments. 

The objective of our study is to analyse the development of a two-dimensional 
convective flow in a cavity of special dimensions with respect to its temporal and 
spatial characteristics. i.e. to investigate the various patterns of time-dependent flow 
in a wide range of the relevant parameter, the Rayleigh number. The experimental 
work is also focused a t  identifying the origins of the flow oscillations. To achieve these 
goals, the flow pattern is visualized by holographic real-time interferometry. Local 
temperature signals are recorded simultaneously with thermocouples to allow a time- 
series analysis. 

This paper is organized as follows. I n  $2 we describe the apparatus and the 
experimental procedure. Our experimental results in Hele Shaw slots with different 
thermal boundary conditions are presented in $3. Then in $4 the oscillatory 
behaviour of the convective flow is discussed in the light of the latest results and 
knowledge. Conclusions are presented in $5 .  

2. The experimental set-up 
The Hele Shaw cell used in the experiments has a height h that  is larger than the 

width b, and both dimensions are much larger than the depth d.  A schematic sketch 
of this cavity is given in figure 1. For distinction from Hele Shaw cells of aspect ratio 
h/b  4 1 we shall call this special cavity of aspect ratio h / b  > 1 a Hele Shaw slot. 

The Hele Shaw slots were designed such that convective-flow phenomena could be 
visualized by interferometric techniques. The slot cavity has either 'low- ' or 
' high- 'conductivity sidewalls. The criteria for low and high conductivity are stipulated 
by visualization requirements. 

If figure 1 the low-conductivity slot is sketched. The vertical walls are made of low- 
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FIGURE 1. Hele Shaw slot h/b  = 3.5. The low-conductivity slot has PVC sidewalls and Plexiglas 
windows. For the high-conductivity slot the PVC was replaced by copper and the Plexiglas by glass. 
AT between the horizontal copper walls is measured by thermocouples across the fluid-filled gap 
and measures the upper temperature. ATr across h is analysed when the flow is time-dependent. 

conductivity polyvinyl chloride (PVC) a,nd 12 mm thick Plexiglas windows for 
flow-visualization purposes. The thermal properties of the materials used are given 
in table 1. PVC and Plexiglas have about the same low value of heat conductivity. 
Copper shims clamped between countercurrent-flow water jackets control the 
temperature gradient applied to the fluid layer and sidewalls. The aspect ratio is 
h/b /d  = 3.5/1/0.15. The depth d x 3 mm is the light integration-pathlength in the 
fluid. The gap depth d plus the thickness of the sidewalls is defined as Y and represents 
the optical pathlength through the box. To get a high conductivity slot the PVC 
sidewalls were replaced by copper walls and the Plexiglas windows by glass windows. 
The low- and high-conductivity gaps were filled with silicone oil of viscosity v = 3 cSt 
and Prandtl number Pr x 37. 

The temperature difference AT between the lower and upper boundaries and the 
upper temperature TI were measured with thermocouples in order to calculate the 
Rayleigh number. The temperature-dependent physical data were taken a t  
T = T,++AT. The heat flow was from bottom to top. At the height +h two 
Chromel-Alumel thermocouples of 0.25 mm diameter were inserted about 2 mm deep 
into the fluid to measure the temperature difference ATT;  the subscript lr meaning 
left-right. The experimental apparatus was held by a steel frame, which had on each 
side a second glass window with vertical temperature gradient imposed by the water 
jackets. Additional pieces of low-thermal-conductivity extradense polystyrene foam 
reduced the convective heat exchange with the surrounding air to a minimum. The 
optical pathway was opened only a few times briefly to take interferograms. The 
thermocouples measuring ATT had the 3 db cutoff point a t  13 Hz, whereas the highest 
frequencies observed were below 0.5 Hz, i.e. in the transmittance range of the 
thermocouples. 

The time-dependent signals from these probes were amplified by factors up to lo6. 
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A high ohmic d.c. offset adapted the time-dependent signals to the working range 
of a Bell & Howell 4020A tape recorder. Active low-pass filters cut off all the noise 
and ripple above 10 Hz. Through playback monitoring, the signals at one Rayleigh 
number were recorded on a chart recorder for up to 12 h. From these tape recordings, 
interesting segments of N = 4096 or 8192 samples were digitized with time increments 
between At = 0.5 and 3.2 s so that the highest harmonic stayed below the Nyquist 
frequency. The data preparation included digital removing of a d.c. offset and a 
possible linear drift, filtering with a Hanning function window and recursive low-pass 
filtering at the actual Nyquist frequency (Bendat & Piersol 1971). From these data, 
prepared for a N-transform of 2N samples (Brigham 1974), the spectral estimates were 
calculated by fast Fourier transforms. These results were plotted, and a printout of 
all amplitudes and frequencies was obtained. 

From the spectra and the printouts, the main frequencies f i ,  i = 1 ,  . .., 4, i.e. those 
with highest energy, were evaluated using the equation 

4 

i - 1  
F =  Z mifi ( 1 )  

(see Gollub & Benson 1980, p. 460) with the integers mi. Two frequencies fl and f 2  
of highest energy were found throughout all the range of time-dependent flow, except 
when the flow was monoperiodic or non-periodic, whereas the others, f3,  f4, were found 
only a t  distinct Rayleigh numbers. 

We define as ‘beating’ a state where the frequency difference Af = f2- f, and 
fi f m1 Af and f2 _+ m2 Af have a high power and high signal-to-noise ratio, SNR. Here 
SNR is defined as an estimated ratio of the power of the evaluated frequency to the 
frequency-dependent thermal noise in the fluid in the vicinity of this frequency. High 
SNR means SNR > lo4. Frequency locking is defined to exist where fL = Af = f2- fl 
with m, fL = f ,  and m2 f L  = f , .  Frequency-locked and beating oscillations are actually 
periodic. As the spectral estimates have not been smoothed and averaged, the 
resolution of the spectra is about equal to the interval l/tg, where the sampling time 
is tg = NAt, with a standard error equal to 1. 

For flow visualization, the Hele Shaw slot was inserted in a holographic real-time 
interferometer (Koster 1980, 1983). Employing this technique for two-dimensional 
flow, the temperature field, i.e. isotherms, can be visualized directly and recorded 
continuously (Vest 1979; Ostrovsky, Butusov & Ostrovskrtya 1980). Owing to the 
high temperature dependence of the refractive index of Plexiglas (Koster 1983), the 
time-dependent temperature fields in Plexiglas slots can only be visualized effectively 
near the onset of time-dependent flow. At high Rayleigh number the fringe 
contribution of the Plexiglas decreases the interferometer sensitivity for phenomena 
in the fluid layer. However, the time-mean pattern could be analysed quite 
accurately. 

Similarity theory gives us the possibility of reducing the number of parameters 
in an experimental study. A system-independent description of convection is, in 
addition to  the thermal boundary conditions, determined by the following parameters 
(Chandrasekhar 1981) : 

Rayleigh number 

Prandtl number 

aspect ratios 

/3gATh3 
Ra = -. 

V K  

V 

K 
Pr = -, 

h h  
d’ 6‘ 
- 
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Here g, /3, K ,  v and AT are respectively the acceleration due to gravity, the thermal 
coefficient of volume expansion, the thermal diffusivity and the kinematic viscosity 
of the fluid, and the temperature difference between bottom and top of the gap of 
height h. Thresholds of the basic changes in flow patterns (critical Rayleigh numbers) 
are labelled Ra,,, where i defines the threshold number versus increasing temperature 
difference. Special emphasis will be given to the oscillatory convective flow. Therefore 
a normalized Rayleigh number Ra* = Ra/Ra,,, is defined, where Ra,,, is the critical 
Rayleigh number of the onset of the oscillatory convective flow defined through 
increasing Rayleigh number. 

The measuring accuracy outlined in our Hele Shaw cell investigation (Koster & 
Muller 1982) applies also to  this study. Here we shall discuss only the accuracy of 
determining the onset of oscillations. After knowing a rough value of the critical 
oscillation threshold, the onset was approached by increasing the temperature 
difference in steps of about 0.02 K at a rate of 0.01 K/min. After each step the 
temperature difference was kept constant for about 24 h ;  the vertical thermal 
diffusion time for silicone oil is t, = h 2 / ~ f  = 17 h. The heating rate of 0.01 K/min is 
about 10 K/td. This heating rate should destabilize the flow at the convective and 
at the oscillatory thresholds. Experimental constraints forbid the use of slower 
approaches. Thus the ‘exact ’ threshold Ra,,, is probably lower than the measured 
value. If we assume that the critical temperature difference AT,, = 2.72 K (see $3.1) 
exceeds the ‘exact ’ critical value by 0.1 K, this would imply, based on the accuracy 
of the temperature difference, a relative error of 444 in the normalized Rayleigh 
number Ra*. 

When the flow is in the oscillatory regime, the time-dependent flow has generally 
found its long-term flow pattern after less than 50 oscillations. 

Two remarks have to be added. First, our map of the various sequences of 
oscillatory motion may be incomplete as the Rayleigh number steps between two 
different states, where measurements were taken, were relatively large. Because of 
the extended range of time-dependent flow, a limitation in measuring points was 
imperative due to interferometric and general experimental implications. Secondly, 
following Gray & Giorgini (1976), the validity of the Boussinesq approximation ends 
at Ra* = 2.6 in the high-conductivity slot (see $3.2) and a t  Ra* = 4.0 in the 
low-conductivity slot (see $ 3.3). 

3. Experimental results 
3.1. Flow-pattern development 

We performed three experiments with three Hele Shaw slots of the same aspect ratio. 
All experiments are started from an isothermal test box with AT = 0. The Rayleigh 
number is increased by alternatively heating and cooling the lower and upper 
boundaries in a quasisteady way with respect to the largest thermal diffusion time- 
scale of the liquid. Typical interferograms of the development of the flow pattern 
in a high-conductivity slot are shown in the upper part of figure 2 and described below. 
Lines of equal brightness correspond to lines of equal temperature in the fluid. The 
width of one fringe is AT = 0.2 K. I n  the lower part of figure 2 the related qualitative 
streamline patterns are shown. To interpret the flow patterns correctly from 
interferograms, some qualitative experiments with a tracer-visualization method 
were performed (Koster 1980) in a way similar to the procedure of Yutin & Tkacheva 
(1979). 
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(a I (6 )  (C) (d) ( e )  

PIQURE 2. Development of flow patterns in a high-conductivity Hele Shaw slot hlb  = 3.5. The fluid 
is silicone oil of Prandtl number Pr x 38. Isotherms are shown above the pertinent streamline 
sketches. The following critical Rayleigh numbers are from the experiments by Koster & Miiller 
(1980). (a )  Ra < Ra,, conduction; ( b )  Ra > Ra,,, single-roll convection, Ra,, = 1.3 x lo7; (c) 
Ra > RaC2, double-roll convection, Racn = 2.4 x lo7; (d )  Ra > Ra,,, oscillatory convection, 
Ra,, = 4.9 x lo7; ( e )  Ra > Ra,,, steady four-roll convection, Racr = 35.7 x lo7. 

As the Rayleigh number is increased from zero, the fluid layer in the first 
high-conductivity slot h/b/d = 3.5/1/0.16 ( Y / d  = 27.2/3.2) remains in the heat- 
conduction regime (figure 2 a ) ,  shown by equidistant horizontal isotherms, until a t  
a first threshold, Racl = 1.3 x lo7, the basic convective mode appears (figure 2 b ) .  Here 
the interference lines, or isotherms, are distorted owing to the rising hot and falling 
cold fluid. Flow recirculation is indicated in two corners. With countercurrent water 
flow through the jackets, left or right turning rolls develop with equal probability. 
A continuing increase of the temperature difference leads at  Rac2 to the appearance 
of a double-roll convective flow (figure 2c) .  This double roll becomes unstable a t  a 
third threshold Raca = Raosc = 4.9 x lo7, and a time-dependent flow sets in as 
illustrated by an instantaneous interferogram (figure 2 d ) .  This pattern has a cellular 
structure in the lower and upper part of the box and a fluid exchange area visible 
in the centre of the interferogram. These time-dependent flow patterns will be 
discussed in detail in $4. At a very high Rayleigh number Ra,, = 3.57 x lo* this 
time-dependence ceases and a stationary (time-independent) pattern of vertically 
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FIGURE 4. One-sided oscillation in a Hele Shaw slot h / b  = 3.5 with low-conductivity walls. 
Ru = 8.9 x lo', Rut = 3.21. The time interval between two interferograms is At = 10 s. The number 
of fringes are high owing to  Plexiglas-borne fringes. 

ordered roll cells appears (figure 2e) .  A transition from oscillatory flow to steady flow 
occurring with increased Rayleigh number will henceforth be denoted a reverse 
transition. 

The flow pattern observed in a second high-conductivity slot h / b / d  = 3.5/1/0.15 
( Y / d  = 8.7),  described later in more detail, exhibits qualitatively the same sequence 
of higher-order modes with increasing Rayleigh number. I n  this case Ra,, and &acz 
were not determined but are assumed to be the same as in the first experiment. 
The critical Rayleigh number for onset of oscillations was Raosc = 4.19 x lo' 
(AT,, = 2.72 K), and a reverse transition to  a vertically layered steady convective 
flow occurred a t  Ra,, = 3.79 x lo8 (&a* = 9.05). 

More details of an oscillatory flow pattern are given by the series of interferograms 
in figure 3. This figure describes what we call a monoperiodic two-sided flow oscillation 
during one complete cycle at a Rayleigh number just above Raosc. One period is 
recognized by a periodically appearing pattern of the temperature field, e.g. image 1 
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and image 15. The high-conductivity copper boundaries with fixed vertical linear 
temperature profiles fix the isotherms a t  a constant height at the sidewalls. The 
isotherms between these points oscillate. This periodic flow pattern has a high degree 
of spatial symmetry in the lower and upper part of the interferograms where the 
four-roll mode is partly visualized. The interferograms show an alternate release of 
plumes from the thermal boundary layers at the horizontal walls which rise or fall 
along the sidewalls and in-between the lower or upper two roll cells. The release of 
plumes from the lower left and right corner of the Hele Shaw slot is phase-shifted 
by n. Each of the two lower rolls develops in its thermal boundary layer periodically 
an instability a t  a frequency fi. The synchronization of the plume release occurs in 
the central exchange zone, which is located in all cycles a t  the same spot. The relevant 
mechanism driving the release of plumes and thereby the flow oscillations is believed 
to be found in the thermal boundary layers a t  the horizontal walls. This idea will 
be substantiated in $4. 

In  the slot with low-conductivity walls (h/b/d = 3.5/1/0.15, Y/d = 8.7) convective 
flow starts as a single-roll cell which is replaced by a double-roll cell with increasing 
Ra (Koster 1980). The corresponding threshold Rayleigh numbers have not been 
determined. At a third threshold Raosc = 2.78 x lo7 the convection flow pattern 
becomes time-dependent. This threshold Rayleigh number is lower than Ra,,, in the 
high-conductivity slot. Only at this particular Rayleigh number of onset of oscillations 
the spatial pattern is symmetric about the vertical centreline in the time average, 
similar to the pattern visualized in the high-conductivity slot (see figure 3). At higher 
Rayleigh number a different pattern of oscillation develops. This one we shall call 
a nonsymmetric one-sided oscillation which is exhibited in figure 4. The higher fringe 
number is caused by Plexiglas-borne fringes. The reverse transition to the vertically 
layered steady-state convection flow occurs at Ra,, = 2.75 x lo8 (Ra* = 9.9). 

It can also be recognized from figure 4 that  the mixing zone is shifted to the lower 
part of the low-conductivity slot. This shift was independent of the departure of the 
room temperature from the mean box temperature +$AT. The experiments show 
that the position of the mixing zone below the horizontal centreline a t  $h is directly 
related to the aspect ratio h/b  > 1 of the slot. No such asymmetry was observed in 
the Hele Shaw cells with h /b  4 1 (Koster & Muller 1982). With increasing Rayleigh 
number the mixing zone moves continuously towards $h. No particular reason can 
be given for this asymmetry. 

3.2. Oscillatory $ow in the high-con,ductivity slot 
3.2.1. The up-scan 

The results of the first of three experiments in a Hele Shaw slot have partly been 
published by Koster & Muller (1981). A second experiment in a high-conductivity 
Hele Shaw slot is described hereafter. 

The aspect ratio of the slot was h/b/d = 3.5/1/0.15 (d  = 3.1 mm). The heating rate 
between measuring points was 0.01 K/min and the Rayleigh number was increased. 
We call this procedure up-scan. The dimensionless periods 7 = K / f h 2  are computed 
and plotted as a function of the normalized Rayleigh number Ra* = Ra/Ra,,, (figure 
5). The results are taken from the AT,, measuring location, shown in figure 1 .  Previous 
experiments (Koster & Muller 1981) revealed that all frequencies are found a t  every 
location in the box. Only the frequencies with the highest energy content are drawn 
in figure 5. 

The graph shows first of all that  the periods decrease with increasing Rayleigh 
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FIQURE 5. Dimensionless period in a Hele Shaw slot with high-conductivity sidewalls. 
Pr = 36.5f0.8; Raosc = 4 . 2 9 ~  lo7. Symbols: 0 ,  f i ;  0, f 2 ;  D, f3; +, locking frequency fL, 0 ,  

harmonic frequency tof,, A, beating frequency; 0 0 ,  subharmonics $j, 0 ,  subharmonic g. 
Experimental power laws: ( 1 )  71 = 4 . 0 ~  10-3(Ra*)-1.Q6; (2) 72 = 4.8 x 10-3(Ra*)-3.17. 3 (3) 

(6) 7% = 2.0 x 10-3(Ra*)-1.40, 71/72 cc (Ru,*)".~; ( 7 )  71 = 1.7 x 10-3(Ra*)-".ss. 
71 = 4.2 x 1 0 - 3 ( ~ a * ) - 2 . 1 8 ;  (4) T2 = 3.2 x 1 0 - 3 ( ~ ~ * ) - 2 . 1 4 ,  r1/72 = 1.31; (5 )  = 2.9 x 1 0 - 3 ( ~ a * ) - 1 . 6 8 .  

number. I n  the hrst range 1 < Ka' < 1.18, the same correlation T~ a &a-' is tound 
as in our previous experiment in the Hele Shaw cell (Koster & Muller 1982) and in 
the Hele Shaw slot (Koster & Muller 1981). This correlation is typical for unsteady 
events originating from thermal instabilities in the horizontal thermal boundary 
layers in liquid-filled vertical gaps heated from below. The upper bound of this range 
is determined by a distinct change of the flow pattern which occurs a t  Ra* = 1.18. 
The bound is confirmed by the correlation coefficient for the periods being close to  
1 in this first range. A second frequency f2 of higher amplitude than fl appears between 
1.23 < Ra* < 1.46 in the spectrum besides the still-important frequency fl. The 
corresponding period T~ = l/fi could be correlated as T~ oc RaP3 2 .  The period T~ has 
a high noise level, and consequently no satisfactory correlation of T1(Ra) could be 
found in this range. I n  the range 1.52 < Ra* < 1.99 we computed for both periods 
T ~ ,  T~ a Ra-2.2 with a ratio T J T ~  = 1.3 and maximum amplitude a t  T~ up to 
Ra* = 1.8. In  the range 2.03 < Ra* < 2.45 two different correlations are found: 
T~ cc RaP1.7 and T~ K with T~ possessing the maximum power. These periods 
approach each other and change into an oscillation with non-periodic features a t  
Ra* = 2.6. I n  the range 5.0 < Ra* < 6.2 the periods are nearly independent of the 
Rayleigh number, while for Ra* > 7.2 the correlation T~ K Rap' is found. The flow 
pattern corresponding to  Ra* > 7.2 no longer exhibits the periodical release of plumes 
from the central mixing zone. However, an up-and-down oscillation of the interfaces 
of the rolls persists. 

Typical spectra and temperature signals are shown in figure 6. A detailed statistical 
analysis of the oscillatory development establishes the following features, which are 
mostly also apparent in figure 5. 

(i) From the onset of oscillations a t  Raosc = 4.19 x lo7, the flow has a monoperiodic 
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FIGURE 6. Typical power spectra of local temperature signals in a slot h / b  = 3.5 with high- 
conductivity sidewalls, Raosc = 4.19 x lo7. Oscillations: ( a )  monoperiodic, Ra* = 1.18; ( b )  
frequency-locking. Intermittency Ra* = 1.80; (c) quasiperiodic, Ra* = 2.29; ( d )  non-periodic, 
Ra* = 3.70; ( e )  periodic, subharmonic, Ra* = 6.12. 

character up to Ra* = 1.18. The spectrum in figure 6(a)  of this periodic oscillation 
exhibits the typical features of a relaxation oscillation. 

(ii) Next the noise level increases and a second frequency appears. Subharmonics 
develop a t  Ra* = 1.25, leading to a frequency locking with a ratio fL/fl/f2 = 11315 
at  Ra* = 1.35 and with a ratio fL/fl/f2 = 11416 a t  Ra* = 1.38. I n  the range 
1.25 < Ra* < 1.5 a low SNR (SNR < 100) is found. The frequency fi is barely above 
the noise level and only the frequency f2 is significant. I n  the range 1.55 < Ra* < 1.91 
with coupled frequencies f2 = 1.3f1 the SNR grows after the frequencies lock in the 
ratio fL/fl/f2 = 11314 a t  Ra* = 1.77 and 1.80. The temperature signal of these 
measuring points show intermittent non-periodic oscillations in between periodic 
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oscillations with high SNR (figure 6b). The intermittent disturbances add the high 
noise level to the spectra. A change in the r(Ra) slope occurs around Ra* = 2, and 
the frequencies lock in a ratio fL/f,/f2 = 11415. Then the flow exhibits a beating 
oscillation, which evolves into a frequency-locking state with fL/fl/f2 = 11617 a t  
Ra* = 2.36. At even higher Rayleigh numbers the two frequencies get so close 
together (figure 6c) that  the frequency fl with the higher amplitude disturbs the 
second frequency f,, leading to a non-periodic oscillation. The non-periodic range 
(figure 6 4  is found between 2.45 < Ra* < 4.60; then the bandpass noise narrows, 
and a t  Ra* = 4.98 a high SNR flow with locked frequencies in a ratio fL/f1/f2 = 11213 
reappears. 

(iii) At Ra* = 5.08 afirst subharmonic$, develops, followed by another subharmonic 
g2 a t  Ra* = 5.75 (figure 6e). This oscillatory motion leads to a locked pattern of 
fL/f,/f2 = 11214 (Ra* = 6.23), where fl and the locking frequency develop from the 
harmonic frequency. A further increase in Rayleigh number leads to a locking ratio 
of fL/fl/f2 = 11316 at Ra* = 6.36 with lower SNR. A third frequency appears a t  this 
Rayleigh number. Next the frequency fl itself changes to the locking frequency fL 
with f2/fl = 211 until fl vanishes a t  Ra* = 7.0. The frequency f, apparently develops 
a subharmonic a t  Ra* = 7.23 which has the highest amplitude. The flow appears to 
be monoperiodic. Finally, the power of the frequencies decreases, leading in a reverse 
transition to a steady-state flow a t  Ra* = 9.05. When reducing the temperature 
difference AT in a quasisteady way, beginning a t  Ra* = 9.05, a hysteresis is 
observed. The four-roll pattern of the steady-state flow stays stable down to 
Ra* = 8.27, where a monoperiodic oscillation with higher harmonic frequencies 
reappears, the spectrum being the same as observed at this particular Ra-value for 
increasing Rayleigh number. 

3.2.2. The down-scan 
A particular down-scan experiment was performed in a high-conductivity Hele 

Shaw slot of aspect ratios h/b/d = 3.5/1/0.16 and Y / d  = 8.7. The quasisteadily 
approached threshold Raosc = 1.3 x lo7 was determined in an up-scan experiment. 

With a transient heating process a monoperiodic flow at Ra* = 2 was established 
(see Koster & Muller 1981). The experiment consisted in scanning a range of Rayleigh 
numbers downwards, beginning a t  Ra* = 2. The frequencies were measured at  the 
sensor location AT,, (figure 1 ) .  The dimensionless periods are defined as r1 or r2, 
coqesponding to the up-scan experiments. The correlations for the individual periods 
in the range of Rayleigh numbers studied are r1 a Ra-'.* and 7,  a R U - ~ . ~  (figure 7) ,  
where the first one is close to the correlation which was attributed to an instability 
of the thermal boundary layer. Since the signal-to-noise ratio in this area was 
generally low (SNR < loo), except for frequency-locked oscillations, we correlated 
all the periods 7,  and r2 and found rit ci RaP2.l. 

The time-dependent fluid motion exhibits the following statistical phenomena. 
(i) Beginning with a monoperiodic oscillation with a mixing zone a t  $h the higher 

harmonic frequencies of the motion are locked such that f, = y2 = 0.0207 Hz 
(Ra* = 2). On decreasing the Rayleigh number, the frequency fl develops a sub- 
harmonic vl. The development of the ratio fl/u2 with decreasing Rayleigh number 
is shown in figure 8. The subharmonic v2 is stable over a large range of Rayleigh 
numbers. When the ratio of the frequencies increases again (figure 8), these lock at  
f1/v2 = 1.5 with low noise. This frequency locking persists down to Ra* = 1.07, far 
below the occurrence of frequency locking with an increasing-Rayleigh-number 
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FIGURE 8. Ratio of the frequency fl and the subharmonic frequency '2fi measured when 

reducing the Rayleigh number. Frequency locking atfl/&f2 = 1.5 and 1.0. 

experiment. A third frequency f ,  and harmonics @af3 (m = 1 , 2 ,  ...) is found at  
Ra* = 1.3 and Ra* = 1.16, where f ,  and v2 are locked. 

(ii) At Ra* = 1.0 a periodic oscillation develops from the subharmonic $l+$mfl 
(rn = 0, 1, 2 ,  ...), and a t  Ra* = 0.94 a periodic oscillation of high SNR with f i  and 
2fi  is found. In  this case the visualized temperature fields exhibit a pattern similar 
to the double-roll pattern found with increasing Rayleigh numbers (figure 2 c ) .  The 
isotherms are not fully stationary, but rather move up and down slightly. We did 
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Rayleigh number Ra* 
FIGURE 9. Dimensionless period in a Hele Shaw slot with low-conductivity sidewalls, 
Pr = 37.0f0.3, Ru,,, = 2 . 7 8 ~  lo7. Symbols as in figure 5. Experimental power laws: (1 )  

= 9.1 x 1 0 - 3 ( ~ ~ * ) - 2 . 1 ;  (2) 72 = 8 . 9 ~  1 0 - 3 ( ~ a * ) - 2 . 8 ;  (3) T1 = 5 . 0 ~  1 0 - 3 ( ~ ~ * ) - 1 . 4 .  , (4) 72 = 2.5 
x 1 0 - 3 ( ~ a * ) - 1 . 4 .  

not check whether this type of oscillation would die off after more than twelve hours. 
A further reduction of the Rayleigh number leads to  steady double-roll convection 
with ATr = constant. The observed width of the hysteresis a t  the onset of oscillations 
is Ra* = 0.1 kO.02, and thus larger than the experimental error. 

3.3. Oscillatory flow in the low-conductivity box 
The aspect ratio of the low-conductivity box is h/b/d = 3.5/1/0.15, with 
d = 3.07 mm. The frequencies were measured a t  the ATr location shown in figure 1.  
The Rayleigh number was increased. 

Again the periods of flow oscillations decrease with increasing Rayleigh number, 
as can be seen from figure 9. We determined the onset of oscillatory flow with several 
up-scan experiments. The lowest Rayleigh number a t  which oscillation was found was 
defined as Raosc. When the onset of oscillations was in the range 1 < Ra* < 1.19 the 
flow oscillation was periodic but with low SNR (SNR < 100). The periods measured 
a t  these Rayleigh numbers are shown by the dashed line between two points in figure 
9. When the Rayleigh number is increased from any Rayleigh number in the range 
1 < Ra* < 1.19 the flow oscillation changes instantly to a quasiperiodic oscillation. 
The increase in period by a factor of about 1.5 a t  Ra* = 1.19 occurs concurrently 
with a decrease in the amplitude of the main frequencies, an increased noise level and 
a transition from a temperature field with symmetric two-sided diagonal oscillation 
to a field with a nonsymmetric one-sided diagonal structure. The oscillation period 
r1 is found to follow the relation r1 cc RaP2.l in the range 1.19 < Ra* < 2.5, which 
is again assigned to a thermal boundary-layer instability. The deviation from the 
analytical solution r cc RaP2 is not significant as the correlation coefficient was only 
0.9. The upper Rayleigh-number bound of the validity of this correlation was 
determined by the appearance of a periodic flow a t  Ra* = 2.5. The second period 
decreases more strongly with the Rayleigh number: r2 oc Ra-2,s. The ratio of the two 
periods is 7Jr2 cc Ra0,7, which indicates that  the two periods are basically 
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incommensurate. In  the range 2.5 < Ra* < 3.7 the frequencies fl and f2 are locked 
in the ratio of 2 and obey the correlation r oc Rap' 4.  At higher Rayleigh number the 
period becomes more and more independent of the Rayleigh number until the 
oscillations cease a t  Ra = 27.5 x lo7 and a steady vertically ordered four-roll pattern 
appears. This reverse transition exhibits a pronounced hysteresis. 

A detailed description of the statistical phenomena as a function of the Rayleigh 
number will be given in the following (see figure 9). One typical spectrum is discussed 
in $4, and additional spectra are given in Koster (1980). 

(i) The onset of oscillatory flow a t  Raosc = 2.78 x lo7 is characterized by the 
appearance of the low-amplitude frequency fi = 0.00432 Hz and higher harmonics. 
At Ra = 3.3 x lo7 (Ra* = 1.19) two incommensurate frequencies develop within a 
noisy spectrum. The first frequency locking occurs a t  Ra* = 1.68 with the ratio 
fL/fl/f, = 1/2/3. Owing to the complete energy transfer, the noise level reduces to 
the range of white noise. When increasing the Rayleigh number, the signal-to-noise 
ratio again decreases to a low value (SNR < 100). 

(ii) At Ra* = 1.90 a subharmonic of the first frequency fl develops and is followed 
by a subharmonic development of the second frequency f, a t  Ra* = 1.96. With one 
subharmonic, the frequencies lock in a ratio fL/fl/f, = 1/2/4. Despite this coupling, 
the energy transfer between the oscillators is not complete, as shown by a high noise 
level in the spectra. At Ra* = 2.5 the frequencies lock with complete energy transfer 
in the ratio fl/f, = 1/2 with fl = fL. 

(iii) Considering fi and f, henceforth as locked as fl/f2 = 1/2, a third frequency 
appears a t  Ra* = 2.9 which leads to a beating frequency f3 = Af a t  Ra* = 3.0. This 
oscillatory pattern initiates a frequency locking a t  Ra* = 3.2 with the ratio 
f,/fl/fL = 10/5/1, where fL = 0.001 67 Hz exhibits a low-amplitude subharmonic 12fL. 
The associated flow pattern is discussed in $4. With increasing Ra the beating 
frequency Af reappears with locked frequencies f, = 2f1, and the noise level increases. 
Then a low-noise periodic flow oscillation reappears a t  Ra* = 3.6 with locked 
frequencies f2 = 2fi. Then spectra develop with bandpass noise near the dominant 
frequencies. The frequency with the highest amplitude in the bandpass spectrum and 
its first harmonic are displayed in figure 9. The bars indicate the width of the bandpass 
noise a t  one-tenth level of the highest power. 

(iv) At Ra* = 5.23 spectra of high SNR (> lo4) reappear, and the frequencies fl 
and f, lock in a ratio fl/f2 = 1/2. With increasing temperature difference, a periodic 
pattern follows another area of non-periodic flow. The frequencies lock in the ratio 
fz/fl/fL = 14/6/1 (Ra* = 6.8), i.e. with fz/fl + 2 and fL = 0.00544 Hz. I n  figure 10 
the additional frequency f3 = f, - fL cc 1/r3 is plotted. The development of r3 in the 
neighbourhood of 7, gives insight into the interaction of two frequencies with 
increasing Ra. At Ra* = 7.33 the frequencies fl and fi remain locked, but the ratio 
changes to fz/fl/fL = 12/6/1, i.e. with fJf1 = 2 again. Then a locking frequency fL 
develops with gL (at Ra* = 7.33) to fL (at Ra* = 7.75). The period r3 is now very 
close to T,,  which implies that the higher harmonics of f L  close to fl disturb fl, and 
a bandpass noise develops a t  the location of fl. 

(v) The next increase in temperature difference causes the noisy frequency fl to 
disappear, and the locking frequency fL to loose its subharmonic, which means that 
rz  and r3 drift away from each other. At Ra* = 8.58 the frequencies have unlocked 
and a beating develops where the beating frequency Af has a subharmonic. At higher 
Rayleigh number, the beating again develops a subharmonic frequency and r3 is again 
located very close to 7,; a bandpass noise spectrum develops around r2. 

(vi) Then the flow adopts a periodic pattern of high SNR a t  Ra* = 9.47 with higher 
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FIGURE 10. Bar graphs of the various statistical features as a function of increasing ()) or 
decreasing (4) Rayleigh numbers: (S) steady; (P) periodic; (QP) quasiperiodic; (L) frequency- 
(phase-)locking ; (N) non-periodic, noisy; (€3) beating; (H) hysteresis. Numbersindicatesubharinonics 
flnumber. (1 )  $3.2; (2) $3.3; (3) Koster & Miiller (1981); (4) $3.2. 

harmonics. Afterwards a reverse transition to a steady flow occurs a t  Ra* = 9.9. 
When reducing the temperature difference, this convective four-roll pattern stays 
time-independent down to Ra* = 8.81, where a beating oscillation develops. The 
spectrum of this oscillation is similar to the one occurring a t  Ra* = 8.6 with increasing 
Rayleigh number. 

3.4. Results revisited 

3.4.1. Flow patterns and time structures 

The sequences of the statistical phenomena observed from the onset of oscillations 
to the reverse transition to the steady-state four-roll convective flow is summarized 
by bar graphs in figure 10. The main results are as follows. 

(i) Different steady convective modes including vertically ordered cells are stable 
in different ranges of the Rayleigh numbers. 

(ii) Oscillatory convective flow occurs in a large range of Rayleigh numbers which 
is bounded by regimes of steady two-vortex and steady four-vortex flows. 

(iii) The onset of oscillations is associated with hysteresis effects. 
(iv) Periodic, quasiperiodic, non-periodic, frequency-locked and beating flow 

(v) Sequences of bifurcations to subharmonic frequencies occur. 
(vi) Intermittent noise may disturb a t  times periodic or frequency-locked flow 

patterns. It develops preferentially at the verge of a range of Rayleigh numbers where 
frequency -locked oscillations are found. 

(vii) Transitions from non-periodic to quasiperiodic or periodic oscillations is 
observed a t  higher Rayleigh number. 

(viii) The reverse transitions to the steady-state four-vortex mode is characterized 
by hysteresis effects. 

(ix) When decreasing the Rayleigh number, frequency-locked states and subharm- 
onics are more stable, compared with experiments with increasing Rayleigh number. 

oscillations exhibit their distinct flow patterns. 

F L M  139 1 3 
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3.4.2. Consequences of the thermal boundary conditions 

(i)  Raosc is higher in case of high-conductivity boundaries (case 1 ) .  
(ii) The range of oscillatory flow is larger in the case of low-conductivity boundaries 

(iii) More transitions between periodic, quasiperiodic and non-periodic oscillations 

(iv) More noise is found in case 2. The SNR of the motion is increased in case 1 .  
(v) The T(Ru*) plot varies smoothly with Ra in case 2 and becomes independent 

of i t  at high temperature difference. I n  case 1 sharper bends in the 7(Ra*) plot are 
found a t  locations where the flow pattern changes. 

(vi) For case 2 the oscillation of longer period 71 persists to a lower Rayleigh number 
than the oscillation with smaller period T ~ .  

(case 2). 

are found in case 2. 

4. Discussion 
4.1. Boundary-layer instabilities and pattern symmetries 

In  the following we propose a fluid-dynamical mechanism which, in principle, is 
capable of driving the oscillations of the convective flow. This mechanism is based 
on a model developed by Howard (1964) which attributes the time-dependent 
convective flow in an infinite horizontal layer heated from below to an instability of 
the thermal boundary layer. This model applies to free convection in a wide layer, 
as has been shown experimentally by Busse & Whitehead (1974), to small boxes 
(Berg6 & Dubois 1979) and to  free convection in a Hele Shaw cell, as demonstrated 
by Koster & Muller (1982). Here we will discuss the applicability of this model to 
convection in a Hele Shaw slot. 

Thermal boundary-layer instabilities can be effectively visualized in slots of aspect 
ratio h/h  = 1.7 .  This instability is shown in figure 11.  In  picture 1 of figure 1 1  the 
lower and upper thermal boundary layers are in the heat conduction regime shown 
by parallel horizontal fringes, i .e. isotherms in the neighbourhood of the horizontal 
walls. I n  picture 2 these two boundary layers show a small vertical deviation of the 
parallel horizontal fringes (see arrows). The disturbances are advccted laterally 
towards the sidewalls, where thermal plumes are discharged from the boundary 
layers. This event is displayed in picture 3 (see arrows). 

In  slots of higher aspect ratio h/b,  like those investigated in the experiments 
discussed in this article, thermal boundary-layer instabilities cannot be visualized by 
the technique employed. The reason is that  the temperature difference covered by 
one colour of the high-contrast fringes is A T  = 0.2 K and the amplitude of the 
disturbances close to the stagnation points is lower (see figure 1 1 ) .  All disturbances 
below the value of AT = 0.2 K are not resolved by the interferometer sensitivity. 

Another fact substantiating the validity of Howard’s model for the initiation of 
the flow oscillations in the Hele Shaw slots is the correlation between the period of 
oscillation and the Rayleigh number in a range of Rayleigh numbers near the onset 
of oscillations. All the experiments performed with Hele Shaw slots show that, in a 
range of Rayleigh numbers just beyond the threshold of onset of oscillations, the 
correlation 7 cc Rap2 holds. This same correlation is obtained from similarity 
considerations by transferring Howard’s ideas directly to the situation in a Hele Shaw 
slot. Details of this analysis were outlined by Koster & Muller (1982) for similar 
investigations in Hele Shaw cells. 

It may be conjectured that other types of flow instabilities may occur in the shear 
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FIGURE 11. Visualization of boundary-layer instabilities in a high-conductivity Hele Shaw slot 
h/b = 1.7 at Ra* = 2.4. Time interval between two interferograms At = 10s.  Arrows point at 
thermal boundary-layer instabilities. 

flow along the vertical walls of the cavity. Based on our visualization experiments 
we assert that there are no viscous instabilities involved in our experiments. With 
a separate experiment in a high-conductivity slot the Reynolds number R e  = wd/v, 
with the velocity w, was calculated at Ra* = 7 after evaluating the velocity of 
aluminium particles added to the test fluid. The Reynolds number was Re x 1. No 
shear-flow instability that we know occurs a t  such low Reynolds numbers. 

Furthermore, in the high-conductivity slot we evaluated the horizontal temperature 
difference AT across the vertical thermal boundary layer a t  the sidewalls. The result 
was AT x 0.5 K.  Based on this temperature difference and on the gap height, the 
Rayleigh number a t  a heated vertical plate was calculated. Its order of magnitude 
was Ra x lo6. This is far below the transition Rayleigh number for the onset of 
turbulent flow along a vertical heated wall. Even if the horizontal temperature 
difference a t  one sidewall is assumed equal to  the maximal vertical temperature 
difference occurring in the fluid layer, the vertical flow should be steady according 
to the criterion for the buoyancy-induced transition from steady to unsteady flow. 

From these considerations we conclude that the vertical boundary layers are not 
expected to become unstable by shear-flow effects which then could drive the flow 
oscillations. It is suggested that the thermal instability of the horizontal boundary 
layers is indeed the mechanism that drives the flow oscillations also in the Hele Shaw 
slot. 

If this descriptive model based on Howard’s idea of an instability of the thermal 
boundary layer as the initiator of flow oscillations is accepted, many distinct flow 
phenomena can be interpreted. This will be shown next for some of the observed 
phenomena taking into account certain symmetry properties of the flow pattern. 

As demonstrated in figure 2, basically three steady-state flow patterns are observed 
with increasing Rayleigh number in the experiments with the Hele Shaw slot of aspect 
ratio h/b  = 3.5 : the single-roll, the double-roll and the four-roll patterns. Time- 
dependent flow occurs in a range of Rayleigh numbers between the steady-state 
double-roll and the steady-state four-roll convective flows. The steady-state flow 

13-2 
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FIGURE 12. Definition sketches of discussed modes in the Hele Shaw slot h / b  = 3.5:  (1) basic mode, 
single-vortex ; (2) double-roll mode, two vortices; (3) four-roll mode, four vortices. 

patterns are very similar to some modes given by linear stability analysis (Normand, 
Pomeau & Velarde 1977; Berg4 & Dubois 1978). These modes are schematically 
displayed in figure 12. The horizontal wavenumber of each roll is defined as CL = 2n/A,, 
with the wavelength A, = 2b,/h, .  This implies that  the single- and four-roll modes 
have lower wavenumbers than the double-roll mode. These modes have also 
characteristic symmetries. The mode of the single roll is centre-symmetric, the mode 
of the double-roll is symmetric to the vertical centreline, and the mode of the four-roll 
pattern is symmetric to the vertical as well as to the horizontal centreline. 

In  the following we shall compare the observed symmetries of the time-dependent 
flow with the symmetry property of the four-roll mode. This can be done by reducing 
interferogram series of a t  least one period of oscillation to the time-average structures. 
In  particular the time-average horizontal and vertical dividing lines can be evaluated. 
This procedure leads to a partition of the slot in four areas. With reference to the 
display of the four-roll mode in figure 12, we allocate a single convection roll to each 
rectangle and determine a wavenumber for the individual rolls by calculating the 
aspect ratio of the width to height of that rectangle, i.e. A, = 2b,/h, .  

In several repeated experiments in a Hele Shaw slot (see e.g. Koster & Miiller 1981) 
the time-average structure of the oscillations a t  particular values Ra* could be 
reduced to four rectangles of equal size and thus of equal wavenumber. Four 
instantaneous interferograms and the corresponding allocated areas of the time- 
average structure are shown in figure 13(a). The stagnation-point flow a t  the 
horizontal walls corresponds to  the vertical centreline flow. This pattern has a 
symmetry comparable to that one of the four-roll mode in figure 12. The flow 
oscillations of such a pattern has been observed to be always monoperiodic with one 
basic. frequcncy and higher harmonics. Instabilities in the thermal boundary layers 
of (.ells 1 and 4 develop simultaneously as those in cells 2 and 3. Instabilities in rells 
1 and 2 as well as in cells 3 and 4 develop in a sequence phase-shifted by n (the 
instabilities were identified by the plume rise or fall of individual plumes along the 
vertical walls). This means that if these instabilities develop a t  the stagnation points 
where the heat transfer is highest as shown in the Hele Shnw cell (Koster & Miiller 
1982), the instabilities are advected periodically to the right and left sidewalls. An 
interpretation of this observation is that  the instabilities in the four thermal 
boundary layers a t  the horizontal walls develop in a phase-locked sequence. 
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Depending on the construction of the Hele Shaw slot and the heating history, 
less-symmetric flow patterns of the oscillatory flow were observed in other experi- 
ments. In  figure 13 (6) the time-average pattern is shown which corresponds to a fringe 
pattern that is symmetric to the vertical centreline but not to the horizontal 
centreline of the box, i.e. h, < ih.  This pattern was observed in a high-conductivity 
slot just beyond the onset of oscillatory flow - a sequence of interferograms for a whole 
period is shown in figure 3. This flow oscillation is monoperiodic, and the time-average 
pattern is constant over all periods as long as the Rayleigh number remains 
unchanged. I n  connection with figure 3 we mentioned previously that, a t  the lower 
horizontal wall, the instabilities in the thermal boundary layers of cells 1 and 2 as 
well as in cells 3 and 4 develop in a sequence phase shifted by R. 

In  that particular experiment we observed a transition from periodic to quasi- 
periodic flow a t  Ra* = 1.18. We shall outline next that this transition can be inter- 
preted by the mechanism of thermal boundary-layer instabilities. 

If we normalize the wavenumbers corresponding to the rectangular sections of 
figure 13(b) by the critical value of the wavenumber a, = 3.2 in a Hele Shaw cell of 
aspect ratio h/d = 20 as calculated by Frick & Clever (1980) the normalized 
wavenumbers of the lower two and upper two sections are respectively 01/01, = 3.0 
and a/a,  = 4.0. The transition from steady-state convection with a high-wavenumber 
pattern to oscillatory convection was investigated previously for the Hele Shaw cell 
geometry by Koster & Muller (1982). From the stability diagram displayed in that 
work and that of Frick & Miiller (1983), i t  is known that the oscillations occur first 
in the low-wavenumber convection cell. The ratio of the two experimental values is 
Ra,,,(a/a, = 4)/Ra,,,(a/a, = 3) x 1.2. This value is practically identical with the 
value of the Rayleigh-number ratio Ra* = 1.18 found a t  the transition from periodic 
to quasiperiodic flow of the non-symmetric flow pattern shown in figure 13 ( b ) .  From 
the point of view that instabilities of the thermal boundary layers initiate flow 
oscillations, the following mechanism is proposed to occur in the slot flow. During 
the quasisteady heating procedure the instabilities in the thermal boundary layers 
develop first a t  the lower horizontal walls according to  the smaller-wavenumber 
geometry of the lower flow sections. The instabilities in the lower right and lower left 
section develop one after the other phase-shifted by an angle of K. Corresponding to 
the higher wavenumber allocated to the upper flow sections of the slot, thermal 
instabilities develop a t  higher Rayleigh number near the upper horizontal wall. These 
instabilities occur periodically in each of the upper sections. Relative to each other 
the instabilities a t  the upper wall are phase-shifted by R, but generally they are 
uncorrelated to the thermal instabilities occurring at the distant lower horizontal 
wall. The interaction of the two pairs of phase-shifted instabilities in the central 
mixing zone of the slot leads to a quasiperiodic flow, or even to phase-locked periodic 
flow with two distinct basic frequencies. This behaviour was observed repeatedly at 
certain Rayleigh numbers if non-symmetries in the flow pattern of the kind described 
above were observed. 

It was observed in low-conductivity slots that predominantly non-symmetric flow 
patterns occurred. Time-average structures are generally characterized by four 
different rectangles as shown in figure 13(c); neither the vertical nor the horizontal 
geometrical dividing lines correspond to the centrelines of the cavity. These 
structures are always linked to highly complicated signals and spectra that are rich 
in transitions and often noisy. The time-average patterns change with increasing 
Rayleigh number; so do the spectra. 

If we assume again that a t  particular Rayleigh numbers thermal boundary-layer 
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FIGURE 13 (u, b ) .  For caption see facing page. 

instabilities develop individually in the four different horizontal thermal boundary 
layers, noise grows in the system when the instabilities in the four horizontal thermal 
boundary layers develop in a random sequence and no coupling is provided in the 
central exchange zone. If the instabilities develop in a sequence that allows a 
phase-locked coupling in the central exchange zone, the flow returns to  a periodic 
oscillation. This leads to the hypothesis that  a frequency-locked oscillation is caused 
by a phase-locked development of four thermal boundary-layer instabilities. 

This hypothesis is substantiated by analysing in detail the temperature trace and 
the spectrum of the flow oscillations displayed by the set of interferograms in figures 
4 and 13(c). The corresponding temperature trace and the spectrum are shown in 
figure 14. The trace of the temperature history determined experimentally could be 
reproduced by evaluating the relation x ( t )  = Z:= X i  sin (27Cfi+Oi), where Xi is the 
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FIGURE 13. ( a )  Definition of geometric quantities to evaluate wavenumbers in a high-conaucuvmy 
slot. The time-average pattern is symmetric to the horizontal and vertical centrelines, 
Ra = 12.44 x lo7, Ra* = 2.54, Pr = 37.3. The timeinterval between interferograms is At = 10 s. The 
dimensionless period is T~ = 4.95 x The oscillation is monoperiodic. ( b )  Definition of geometric 
quantities to evaluate wavenumber for oscillatory flow of figure 3. The time-average pattern is 
symmetric only to the vertical centreline. The pattern leads to a transition periodic-quasiperiodic. 
(c) Definition of geometric quantities to evaluate wavenumbers in the low-conductivity Hele Shaw 
slot. The time-average pattern is not symmetric either to the vertical or horizontal centrelines. 
Multiple transitions between periodic, quasiperiodic and nonperiodic oscillations occur. ( A )  
Ra* = 3.21 (figure 4), (R) Ra* = 6.80. Patterns ( A )  and ( R )  show that the time-average pattern 
changes with increasing Ra. 

power taken from the spectrum and fi are the four frequencies with highest power 
(table 2 ) .  Oi are four phase angles of the Fourier transform: O , ( f )  = tanp1 ( l ( f ) / R ( f ) ) .  
Here I (  f )  is the imaginary part and R( f )  is the real part of the Fourier transform. 
The calculated temperature trace reproduced the original experimental trace quite 
accurately ; however, exhibiting all essential features only if particular values for the 
phase angles, calculated from the spectrum, namely O,(f,) = 49.7", O,(fJ = 57.5", 
O , ( f , )  = 87.7", 04(f4) = 80.5" are taken. We consider this result a strong support for 
our hypothesis that  thermal boundary-layer instabilities develop in the four horizontal 
thermal boundary layers, are phase-shifted and lead to broadband spectra if no or 
weak coupling exists between the different events, or lead to line spectra if coupling 

I n  our opinion all these observations substantiate the descriptive model that in 
the Hele Shaw slots four horizontal thermal boundary layers are prone to instabilities 
which may develop individually. The appearance, interaction and resonant coupling 
of these instabilities of the thermal boundary layers appears to  be a fluid-dynamical 
mechanism that is capable of driving oscillatory convective flow and by which various 
transitions between periodic, quasiperiodic and non-periodic flow can be interpreted. 

occurs. 
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FIGURE 14. Temperature trace AT,, and power spectrum in the low-conductivity 

slot a t  Ra = 8.90 x lo', i.e. Ra* = 3.21 (figure 4). 

4.2. Reverse transitions 

A new phenomenon in our experiments was the reverse transition from time-dependent 
to steady-state flow at very high Rayleigh numbers. These steady flows appeared in 
three different Hele Shaw slot experiments, but the histories of the time-dependent 
flows just before the transition to steady-state flow at the threshold Racr and the flow 
pattern were always different. 

In  an earlier experiment in a high-conductivity slot (Koster & Miiller 1981) the 
time-dependent flow made a transition to the steady-state four-roll flow pattern from 
a periodic motion where the frequency fl had many strong higher harmonics. The 
steady flow pattern itself was spatially symmetric (figure 15a). In  the high- 
conductivity slot described in $3.2 the pattern was different. From figure 15(b)  it can 
be seen that the roll cells have different wavenumbers. In  the experiment the periodic 
motion before the transition to steady state had a slightly higher frequency and at 
Ra* = 7 .0  the frequency fl disappeared, but the first harmonic 2f1 = fi was main- 
tained. Then at Ra* = 7 . 3  the motion changed to a periodic oscillation visualized as 
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F (Hz) 
0.001 53 
0.00334 
0.00677 
0.00830 
0.01011 
0.01345 
0.015 16 
0.01678 
0.020 12 
0.02356 
0.026 89 
0.03023 
0.03357 
0.03700 
0.04034 
0.04702 
0.05035 
0.053 79 

0.057 73 
0.06723 

0.07057 
0.07391 
0.07725 
0.08059 
0.08393 
0.087 37 
0.09070 

m1 m2 m3 m4 

1 0 -1 0 
0 1 - 1  0 
0 0 - 1  1 

1 - 2  2 0 
- 1  0 1 0 
0 0 0 

1 1 - 1  0 
1 0 - 1  I 
0 - 1  2 0 
0 0 1 0 
0 1 0 0 
0 0 0 1 
0 1 - 1  1 
1 0 1 0 
3 0 0 0 
0 0 1 1 
1 2 - 1  0 
1 1 - 1  1 
0 0 1 1 
4 0 0 0 
0 1 0 1 
0 0 0 2 
0 1 - 1  2 
0 2 - 2  2 
1 0 1 1 
1 1 0 1 
0 0 3 0 

t 0 0 0 

1 

1 0 ; 0 

TABLE 2. Function F = mL f, +m, fi +m, f3 +m, f4 of the frequency spectrum in figure 14. The 
integers mi are also listed. Subharmonics are expressed as rational numbers of m, 

a slight up- and downward swinging of the roll cells while the plume penetration into 
the mixing zone was suppressed. 

In  the box with low-conductivity sidewalls described in 8 3.3, the four-roll pattern 
shows a clear spatial asymmetry as recognized in figure 15(c). It is observed from 
the fringe movement that the diagonally opposite rolls of higher wavenumber 
continue interacting in the central mixing zone beyond the Rayleigh number 
Ra* = 8.1 (figure 9), where the low-wavenumber rolls cease interacting. This dis- 
continued interaction of two diagonally opposite small rolls seems to explain the 
disappearance of the frequency f,. 

Chu & Goldst,ein (1973) observed that the instabilities in the form of thermals 
forming in a boundary layer stay in this boundary layer after maturing before 
discharging into the fluid, and that with increasing Rayleigh number the majority 
of the thermals are dissipated on their way to the opposite horizontal surface without 
reaching it. Similar dissipation processes, also observed in our Hele Shaw cell 
experiments (Koster & Miiller 1982), enhanced by a thermal dissipation effect of the 
heat-conducting sidewalls, is believed to explain the reverse transition to the steady- 
state four-roll convective flow. Altogether these observations may explain the reverse 
transition to steady-state convection. Further experiments are required to 
substantiate the fluid-dynamical cause of the reverse transition to a steady flow. 
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5. Summary 
Convection experiments were performed in Hele Shaw slots with different thermal 

boundary conditions. The slots were filled with silicone oil of Prandtl number Pr x 37 
and were heated from below. 

With increasing Rayleigh number several steady-state and time-dependent flow 
patterns develop. At very high Rayleigh numbers the time-dependent flow is 
succeeded in a reverse transition by a steady-state convection. This steady flow is 
a vertically layered flow consisting of two pairs of rolls, one pair located on top of 
the other. 

Simultaneous visualization of the temperature fields and frequency analysis of local 
temperature signals show that the mechanism for the oscillations in convective flow 
and its variety of statistical content is the instability of the individual thermal 
boundary layers of the convection rolls a t  the horizontal boundaries. 

Transitions from non-periodic to periodic or frequency-locked oscillations are 
observed. Phase-locking of thermal boundary-layer instabilities in the four individual 
thermal boundary layers a t  the horizontal boundaries explains these transitions to 
periodic oscillations. At those particular Rayleigh numbers the thermal boundary- 
layer instabilities are coupled resonantly. Noise grows and non-periodic flow sets in 
if instabilities in the four horizontal thermal boundary layers occur out of resonance. 

High time-average symmetry of the flow pattern is linked to monoperiodic flow. 
With decreasing time-average symmetries a larger variety of more complicated 
frequency spectra are found. More transitions between periodic, quasiperiodic and 
non-periodic flow patterns are then observed. 

The authors are indebted to R. L. Sani for careful reading ofa draft of the manuscript 
and for valuable suggestions for improvements. Support by F. Rosenberger and the 
Department of Physics of the University of Utah for one of the authors (J. N. K.) 
during the preparation of this paper is gratefully acknowledged. 
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